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Dynamics of HIV Infection: A Cellular Automata Approach
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We use a cellular automata model to study the evolution of human immunodeficiency virus (HIV)
infection and the onset of acquired innumodeficiency syndrome (AIDS). The model takes into account
the global features of the immune response to any pathogen, the fast mutation rate of the HIV, and a fair
amount of spatial localization, which may occur in the lymph nodes. Our results reproduce the three-
phase pattern observed in T cell and virus counts of infected patients, namely, the primary response, the
clinical latency period, and the onset of AIDS. The dynamics of real experimental data is related to the
transient behavior of our model and not to its steady state. We have also found that the infected cells
organize themselves into spatial structures, which are responsible for the decrease on the concentration
of uninfected cells, leading to AIDS.
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In the last decades the infection by the human immuno-
deficiency virus (HIV), which causes AIDS (acquired im-
munodeficiency syndrome), has been the subject of most
intense studies that encompass diverse fields of scientific
research. Although major progress has been achieved by
medical and biological researchers in understanding differ-
ent aspects of the virus-host interaction, the mechanisms
by which HIV causes AIDS still remain unexplained.

The immune response to any virus is generated by a com-
plex web of interactions among different types of white
blood cells (monocytes, T and B cells). The time scale to
develop a specific immune response may vary from days
to weeks. In the case of HIV, the entire course of infec-
tion involves two different time scales [1]. The primary
infection exhibits the same characteristics as any other vi-
ral infection: a dramatic increase of the virus population
during the first 2–6 weeks, followed by a sharp decline,
due to the action of the immune system. However, instead
of being completely eliminated after the primary infection,
as many other viruses, a low HIV concentration is detected
for a long asymptomatic time: the clinical latency period.
This period may vary from one to ten (or more) years. Be-
sides the low virus burden detected during this period, a
gradual deterioration of the immune system is manifested
by the reduction of CD41T-cell populations in the periph-
eral blood. The third phase of the disease is achieved when
the concentration of the T cells is lower than a critical value
(�30%), leading to the development of AIDS. As a con-
sequence, the patient normally dies from opportunistic dis-
eases. This common pattern observed in infected patients
[1] is depicted in Fig. 1, which shows the plasma viremia
titer and the CD41T cell counts in the peripheral blood as
functions of time.

Several theories [2] have been proposed to explain why
and how the virus remains in the organism after the pri-
mary immune response, and the causes of the decline of
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T-cell counts, leading to the onset of AIDS. So far, none
of them has provided a complete explanation for the entire
process.

Mathematical models have also been developed to try
to understand the dynamics of the HIV infection. Most of
them use ordinary (or partial) differential equations to de-
scribe different aspects of the dynamics of the host-parasite
interaction (for a review see [3]). Although many of them
have contributed to the understanding of various aspects
of the development of the disease, they fail to describe
the two time scales observed in the course of infection:
the short time scale (few weeks) associated with the pri-
mary response and the long one (few years) associated with
the clinical latency period and the onset of AIDS. These
mean-field-like models do not take into account the local
interactions and the spatial inhomogeneities, caused by lo-
calization of the initial immune response in the lymphoid
organs. We believe that these features, which are natural
ingredients of our model, are of central importance. From
the dynamical point of view, these different time scales
may be related to two kinds of interactions: one local and
fast, and the other long-ranged and slow.

Experimental evidence [4] supports that the lymph
nodes are major reservoirs of HIV infection in vivo. A
snapshot of the distribution of cells among the different
compartments of the immune system will show only a
small fraction (2% 4%) of the cells circulating in blood
and lymph, while the majority is found in the lymphoid
organs [5]. Paradoxically, the process of mobilization and
activation of immune cells directed against the virus that
occurs in the lymphoid micro-environment, in the case of
the HIV, provides a milieu that contributes to the virus
spread [4].

Recently, one of us has shown that cellular automata
models may describe well experimental patterns observed
in immune responses [6]. Since this kind of approach
© 2001 The American Physical Society 168102-1
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FIG. 1. The common pattern exhibited by infected patients, first presented by Pantaleo et al. [1]. The plasma viremia titer (black
circles) and CD41T cell counts (squares) versus time show a three-phase dynamics.
is suitable to describe the local interactions, we use it to
model the course of the HIV infection. We assume that the
HIV infection does not affect substantially the overall be-
havior of the immune system [7]. Our model tests whether
the combination of a healthy immune system with the high
mutation rate of the HIV and a fair amount of spatial lo-
calization, occurring in the lymphoid tissues, may explain
the three-phase dynamics observed during the course of the
infection (see Fig. 1). The results obtained from simula-
tions of our model are shown in Fig. 2, and as far as we
know, this is the first time that the entire course of the HIV
infection process is so faithfully reproduced by a theoreti-
cal model, without any change of the parameter set during
the simulations.

A lymph node has a mesh structure with different sites of
interactions that may be approximated by a rough surface
[8]. Therefore we model the interaction among the im-
mune system cells in the lymphoid tissues using a square
lattice. With each site we associate a cell that may be
a CD41T cell or a monocyte that is the main target for
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FIG. 2. The results obtained from our simulations for a two-
dimensional lattice with L � 700, pHIV � 0.05, R � 4, t � 4,
pinfec � 1025, prepl � 0.99. The evolution of the population den-
sities exhibits the same three-phase dynamics observed for in-
fected patients. We have adopted open squares for healthy cells,
full circles for infected cells, and open triangles for dead cells.
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the HIV [1]. The four-state automaton corresponds to the
states of the cell, which may be found in these tissues to
mount the immune response. Each cell can be in one of
following states: (a) healthy; (b) infected-A1, correspond-
ing to an infected cell that is free to spread the infection;
(c) infected-A2, the final stage of an infected cell before it
dies due to the action of the immune system; and, finally,
(d) dead, an infected cell that was killed by the immune
response.

The initial configuration is composed of healthy cells,
with a small fraction, pHIV, of infected-A1 cells, represent-
ing the initial contamination by the HIV. In one time step
the entire lattice is updated in a synchronized parallel way,
according to the rules described below. The updated state
of a cell depends on the states of its four nearest neighbors
and the four next nearest neighbors, in a square lattice.

Rule 1: Update of a healthy cell: (a) If it has at least
one infected-A1 neighbor, it becomes infected-A1. (b) If it
has no infected-A1 neighbor but does have at least R (2 ,

R , 8) infected-A2 neighbors, it becomes infected-A1.
(c) Otherwise it stays healthy.—Rule 1a mimics the spread
of the HIV infection by contact, before the immune sys-
tem had developed its specific response against the virus.
Rule 1b represents the fact that infected-A2 cells may, be-
fore dying, contaminate a healthy cell if their concentration
is above some threshold.

Rule 2: An infected-A1 cell becomes infected-A2 after t

time steps.—An infected-A2 cell is the one against which
the immune response has developed, and hence its ability
to spread the infection is reduced. Here t represents the
time required for the immune system to develop a specific
response to kill an infected cell. Such a time delay is re-
quired for each infected cell since in our model we view
each new infected cell as carrying a different lineage
(strain) of the virus. This is the way we incorporate the
mutation rate of the virus in our model. When a healthy
cell is infected, the virus uses the cell’s DNA in order to
transcribe its RNA and replicate. During each transcrip-
tion an error may occur, producing, on the average, one
168102-2
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mutation per generation and hence a new strain of the
virus is produced [9,10].

Rule 3: Infected-A2 cells become dead cells.—This rule
simulates the depletion of the infected cells by the immune
response.

Rule 4: (a) Dead cells can be replaced by healthy cells
with probability prepl in the next time step (or remain dead
with probability 1 2 prepl). (b) Each new healthy cell in-
troduced may be replaced by an infected-A1 with proba-
bility pinfec.—Rule 4a describes the replenishment of the
depleted cells, mimicking the high ability of the immune
system to recover from the immunosuppression generated
by infection. As a consequence, it will also mimic some
diffusion of the cells in the tissue. Rule 4b simulates the
introduction of new infected cells in the system, either
coming from other compartments of the immune system
or resulting from the activation of the latent infected cells,
as suggested in the literature.

We performed simulations of the model, using periodic
boundary conditions, on a lattice of N � L2 sites with L
ranging from 300 up to 1000. All the adopted parameters
were based on experimental data: pHIV � 0.05 was cho-
sen based on the observation that one in 102 or 103 T
cells harbor viral DNA during the primary infection [11];
pinfec � 1025 is due to the fact that only one in 104 to
105 cells in the peripheral blood of infected individual ex-
presses viral proteins; to simulate the high ability of the
immune system to replenish the depleted cells, we used
prepl � 0.99, although smaller probabilities could also be
considered; since the delay parameter (t) may vary from
2 to 6 weeks, we chose t � 4. Each of our time steps
corresponds to one week.

In Fig. 2, we present the evolution of the densities of
healthy cells, infected cells (A1 and A2 types), and dead
cells, obtained from simulations of our model. We show
the results averaged over 500 simulations and the corre-
sponding standard deviations (error bars). Each sample
corresponds to different initial configurations and there-
fore different individuals. There is qualitative agreement
between our results for the density of healthy and infected
cells and the time evolution of the number of CD41 T
cells in the peripheral blood and the plasma viremia titer
shown in Fig. 1. The model reproduces the two time scales
observed in the dynamics of the HIV infection. The small
error bars at the primary infection indicate that its dynam-
ics is insensitive to the initial configuration, in contrast to
what occurs in the latency period.

Our model allows a closer look at local behavior. From
the analysis of the spatial configurations randomly gener-
ated by the model in individual simulations, we noticed
that the slow dynamics and the large deviations, observed
in the latency period, are related to the emergence, after
completion of the primary response, of some spatial struc-
tures of infected cells. These growing special structures
spread the infection in such a way that they slowly com-
mit more and more healthy cells, segregating and trapping
uninfected cells.
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In Fig. 3 we present four “snapshots” of typical configu-
rations obtained during one particular simulation. Starting
from an initial configuration composed of healthy cells
(blue) with a random distribution of infected-A1 cells
(yellow), in the subsequent time steps each individual
infected-A1 cell generates a pulse of infected cells, of
width �t 1 1�, propagating in all directions. Whenever
the average distance �l1� between individual infected cells
in the initial configuration is less than or equal to �2t 1 1�,
the independent pulses achieve a maximum coverage of the
lattice. For t � 4 the maximum coverage occurs after five
weeks as shown in Fig. 3a. After that the concentration of
infected cells decreases to a minimal value at 2�t 1 1�
time steps, establishing the end of the primary infection
phase (10 weeks, in this case).

In the following time steps the presence of infected cells
will be dictated by pnewinfec � prepl � pinfec, according to
rule 4. When new infected cells are introduced, they may
generate two different kinds of structures. The simplest
one corresponds to a wave of infected cells propagating in
all directions. But in this case, since pnewinfec ø pHIV the
average distance �l2� between the new infected cells, intro-
duced at random locations, is much larger than �2t 1 1�.
The spread of infection generated only by these structures
takes a longer time to cover the lattice, and after that the
infection vanishes. It is very rare, however, to find only
these simple structures. Examples of such structures are
shown in the bottom right of Figs. 3b and 3c. A second
type of structure also occurs, due to the interplay between

FIG. 3 (color). Four snapshots of parts of the lattice configu-
ration for different time steps: (a)–(d) correspond to 5, 18, 25,
and 200 weeks, respectively. We have adopted the same param-
eters used in Fig. 2. The color codes for the different states
of the cell are the following: healthy=blue, infected-A1=yellow,
infected-A2=green, and dead=red.
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rules 1b, 4a, and 4b. These special structures are gener-
ated by “sources” of infected cells. These sources appear,
for instance, when a new infected-A1 cell, introduced by
rules 4a and 4b, is surrounded by at least R dead cells
(R � 4 for the results shown here). At every (t 1 3) time
steps they launch a propagating wave front of infected cells
with width (t 1 1). Figures 3b and 3c (upper left) show
such structures for two subsequent periods, corresponding,
respectively, to 18 and 25 weeks. As these structures grow,
the number of infected cells increases and the concentra-
tion of healthy cells decreases, as observed in infected pa-
tients during the latency period. These growing structures
may eventually cover the entire lattice, with the densities
of cells evolving towards steady states. Note that the fi-
nal average density of healthy cells is always below the
threshold of the CD41 T cells counts, which is related to
the onset of AIDS. Therefore according to our findings,
the dynamics of real experimental data, shown in Fig. 1,
would correspond to the transient behavior of our model.

Analysis of the source distribution at any given time
shows that the latency period depends on �l3�, the aver-
age distance between sources and, consequently, on the
probability of occurrence of such sources. Actually, since
new sources can be released at any time step, the length of
the transient time depends on the spatiotemporal average
of the distance between the sources. These growing struc-
tures of infected cells may be associated with syncytia, an
aggregation of infected cells observed experimentally, and
according to our results they would be responsible for the
depletion of T cells leading to AIDS. These results actu-
ally corroborate some previous suggestions that syncytia
could be responsible for the permanence of the virus in the
system, based on the analysis of the similarities between
HIV infection and other diseases [2,12].

In this work we have shown that our cellular automaton
model reproduces quite well the three-stage dynamics (two
time scales) of the HIV infection, as observed in the in-
fected patients, without changing the parameter set during
the simulation. The short time scale, characteristic of the
primary infection, increases when t is increased or when
pHIV decreases. The long time scale, responsible for the
clinical latency period and the onset of AIDS, is associated
with the emergence of sources of infected cells and the for-
mation of special structures that slowly increase the num-
ber of infected cells and confine healthy cells. This special
pattern formation depends on the value of the parameter
R of rule 1b, prepl, and pinfec. Our results indicate that in
contrast to the ordinary differential equation models, the
clinical latency does not correspond to a steady state but
to a long transient. The reason for our success in describ-
ing the three-stage dynamics, whereas the other approaches
fail, is that we take into account local interactions, which
may occur in the lymph nodes, that play a major role on the
course of the infection. Our findings corroborate the im-
portance of the lymph nodes, the spatial localization, and
the local interactions on the dynamics of HIV infection, as
suggested in the medical literature [4].
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We found that these results are reproducible for a wide
range of the parameters. The complete study of the pa-
rameter space, the detailed discussion of the necessary con-
ditions to generate the special structures, and the role they
play spreading the infection will be published elsewhere.

This work and another one [13] published after submis-
sion of our manuscript further substantiate claims made
in previous studies [6] that discrete models may be use-
ful to describe emergent properties of complex biological
systems, and to understand the mechanisms underlying its
dynamical behavior.

Finally, it is worth mentioning the work of Mannion
and collaborators [14], who use stochastic discrete models
to study some aspects related to the dynamics of HIV
infection.
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